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SUPPLEMENTARY METHODS 

(Variational) Autoencoders 

Autoencoders (or encoder-decoders) are an artificial neural network model trained to learn an efficient encoding of the 
input data of observations.1  The designs of various approaches differ in detail, but nearly all model the observational 
input as input layers using the same dimensionality as the output layer.  Between the input and output layers are one or 
more layers, each reduced in size.  Autoencoders are commonly designed to be symmetric, with a reduced number of 
neurons in the most central layer.  In the simplest version, an autoencoder would consist of three layers: one input layer, 
one hidden layer and one output layer.  The hidden layer would have, potentially substantially, less neurons than the 
input and output layers and the output layer would have the same number of neurons as the input layer.  Given input 
vectors for each observation, the model is than trained to learn the identity function for any input vector.  As the hidden 
layer has essentially a lower dimension than both input and output, working as a data information bottleneck, any model 
that can reconstruct the original input from this reduced middle layer does encode the essence of the respective input 
observations. See Supplementary Figure 1 for a schematic comparison between normal neural networks and 
autoencoders.  

Autoencoders have been used in a variety of applications as dimensionality reduction (or embedding) schemes2, as they 
are able to capture non-linear dependencies of the data.  Depending on the size of the dataset, they can also be more 
efficient to compute.  However, as an autoencoder model is a neural network, the initialization as well as the batch 
learning are to some degree random.  Hence, each training of such a model might result in a different encoding, whereas 
conventional principal component analysis (PCA) should result in the same output at each run.  Autoencoders are 
generally assumed to be able to learn more powerful generalizations when compared to PCA.  

One particular type of autoencoder is the variational autoencoder (VAE).  These are deep generative models that are 
highly expressive and are able to the capture the latent and underlying structure of potentially complex data.  In contrast 
to normal autoencoders, they can also generate new data points (observations).  Common approaches use the trained 
autoencoder model to generate novel data.  A recent development employs the generative capabilities of VAEs to also 
generate missing data during training 3.  The Heterogeneous-Incomplete (HI)-VAE approach used in this study is 
specifically designed to cater for heterogeneous data, such as different kind of numerical variables (discrete count data, 
positive real-valued data, and real-valued data) and nominal variables (categorical and ordinal data).  In detail, the 
likelihood models employed are as follows: 

 

Numerical variables: 

• Real-valued data, which takes values in the real line, i.e., xnd ∈ R uses a Gaussian likelihood model, i.e.,   
𝑝𝑝(𝑥𝑥𝑛𝑛𝑛𝑛|𝛾𝛾𝑛𝑛𝑛𝑛)  =  𝒩𝒩�𝑥𝑥𝑛𝑛𝑛𝑛|𝜇𝜇𝑑𝑑(𝑧𝑧𝑛𝑛),𝜎𝜎𝑑𝑑2(𝑧𝑧𝑛𝑛)�  

• Positive real-valued data, which takes values in the positive real line, i.e., 𝑥𝑥𝑛𝑛𝑛𝑛  ∈ 𝑅𝑅+  uses a log-normal likelihood 
model, i.e., 𝑝𝑝(𝑥𝑥𝑛𝑛𝑛𝑛|𝛾𝛾𝑛𝑛𝑛𝑛)  =  𝑙𝑙𝑙𝑙𝑙𝑙 𝒩𝒩�𝑥𝑥𝑛𝑛𝑛𝑛|𝜇𝜇𝑑𝑑(𝑧𝑧𝑛𝑛),𝜎𝜎𝑑𝑑2(𝑧𝑧𝑛𝑛)�  

• (Discrete) count data, which takes values in the natural numbers, i.e., 𝑥𝑥𝑛𝑛𝑛𝑛  ∈  {1,⋯ ,∞} is modelled using a Poisson 
likelihood model, i.e., 𝑝𝑝(𝑥𝑥𝑛𝑛𝑛𝑛|𝛾𝛾𝑛𝑛𝑛𝑛)  =  𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜�𝑥𝑥𝑛𝑛𝑛𝑛|𝜆𝜆𝑑𝑑(𝑧𝑧𝑛𝑛)� 

Nominal variables:  

• Categorical data, which takes values in a finite unordered set, e.g., 𝑥𝑥𝑛𝑛𝑛𝑛 ∈  {‘𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏’, ‘𝑟𝑟𝑟𝑟𝑟𝑟’, ‘𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏’}. Assumes a 
multinomial logit model such that the 𝑅𝑅-dimensional output of a deep neural network 𝛾𝛾𝑛𝑛𝑛𝑛 =
�ℎ𝑑𝑑0(𝑧𝑧𝑛𝑛), ℎ𝑑𝑑1(𝑧𝑧𝑛𝑛),⋯ , ℎ𝑑𝑑(𝑅𝑅−1)(𝑧𝑧𝑛𝑛)� represents the vector of unnormalized probabilities, such that the probability of 

every category is given by 𝑝𝑝(𝑥𝑥𝑛𝑛𝑛𝑛 = 𝑟𝑟|𝛾𝛾𝑛𝑛𝑛𝑛)  =  𝑒𝑒𝑒𝑒𝑒𝑒−ℎ𝑑𝑑𝑑𝑑(zn)

∑ 𝑒𝑒𝑒𝑒𝑒𝑒−ℎ𝑑𝑑𝑑𝑑(zn)𝑅𝑅
𝑞𝑞=1

 

• Ordinal data, which takes values in a finite ordered set, e.g., 𝑥𝑥𝑛𝑛𝑛𝑛 ∈
 {‘𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛’, ‘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠’, ‘𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜’, ‘𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢’, ‘𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎’} and where the probability of each (ordinal) category can be 
computed as 𝑝𝑝(𝑥𝑥𝑛𝑛𝑛𝑛 = 𝑟𝑟|𝛾𝛾𝑛𝑛𝑛𝑛)  =  𝑝𝑝(𝑥𝑥𝑛𝑛𝑛𝑛 ≤ 𝑟𝑟|𝛾𝛾𝑛𝑛𝑛𝑛)  −  𝑝𝑝(𝑥𝑥𝑛𝑛𝑛𝑛 ≤ 𝑟𝑟 − 1|𝛾𝛾𝑛𝑛𝑛𝑛)  with (𝑥𝑥𝑛𝑛𝑛𝑛 ≤ 𝑟𝑟|𝑧𝑧𝑛𝑛)  =
 1

1+𝑒𝑒𝑒𝑒𝑒𝑒−�𝜃𝜃𝑟𝑟(𝑧𝑧𝑛𝑛)−ℎ𝑑𝑑(𝑧𝑧𝑛𝑛)�
. 

 

We have made the VAE implementation available via PyPi.org (https://pypi.org/project/hivae/).   

 

Clustering analysis and techniques 

Cluster analysis, or clustering for short, is an approach originating from unsupervised machine learning (ML), by which 
the ML algorithm groups similar samples together based on some form of similarity or distance measure.  A variety of 
clustering techniques and methodologies exist.  Probably the most known and commonly used representatives are 

https://pypi.org/project/hivae/
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hierarchical clustering and the partition-based algorithm k-means.  Other approaches like DBSCAN4 are based on 
finding clusters based on density, or use artificial neural networks to find similar sub-groups.5  

Hierarchical clustering can be divided loosely into two main approaches: ‘Top-down’, where all observations initially 
form a single cluster and are subsequently divided into smaller partitions according to one or more features; and 
‘Bottom-up’, where each individual observations are considered a single cluster (singleton) and the most similar 
clusters are merged incrementally.   

The most common example of a bottom-up approach is agglomerative clustering.  To measure the (dis)similarity 
between sets of observations, a metric is required.  Common metrics for numerical observations include the Euclidian 
distance, the Manhattan distance, and the Mahalanobis distance.  For other data types, such as categorical data, text 
observations or binary vectors, other metrics can be applied.  The calculation of distance or similarity between sets of 
observations is not only based on the employed metric, but also by the linkage type used.  Broadly speaking, the linkage 
criterion, which defines how to calculate the similarity between two clusters is based on the two closest observations of 
the two clusters (single-linkage), the farthest observations (complete linkage), (weighted) average of all observations, or 
based on the distances of the cluster centres (centroids).  The agglomerative hierarchical clustering algorithm merges 
successive clusters until only one single cluster exists.  During this iterative merging, each two clusters are merged 
based on a specific distance.  By doing so, it produces a history of mergers, which can also be efficiently stored and 
viewed in the form of a tree-based dendrogram.  This dendrogram can be used define clusters by choosing different cut-
off points in the tree; a high cut-off results in lower number of clusters while a lower cut-off results in more clusters.  In 
the extreme case, a distance of 0.0 between clusters results in the complete set of observations.  

Whereas agglomerative clustering merges start from individual examples, k-means employs a different partitioning 
approach. The basic k-means algorithm initially assigns k observations to be cluster centres or centroids, and then 
assigns each observation to its nearest centroid.  Once, all observations are assigned to one of the k clusters, the new 
centres for each cluster are calculated based on the high-dimensional mean of the observations.  This process is repeated 
either until the cluster assignment converges or a maximum number of iterations has been reached.  Similar to 
hierarchical clustering, the cluster analysis resulting from k-means depends to a large extend on the employed distance 
measure and all of the above-mentioned distance measures can be employed within the scope of the algorithm.  
Variations of the general k-means approach exist, most notably the k-medians algorithm and k-medoids algorithm.  The 
first simply replaces the mean in each dimension during calculation of new cluster centres with the median in each 
dimension, while the latter (k-medoids or partitioning around medoids algorithm) chooses only existing observations as 
centroids, which effectively minimizes the sum of distances within the cluster to the respective medoids.  While the 
cluster centres using k-means can potentially lay outside the convex hull of a cluster, the k-medoids is considered more 
robust against outliers and noise.  To overcome the randomness of the seed selection in k-means, using the centroids of 
an agglomerative clustering as initial seeds was proposed.  This approach, called k-means++, therefore overcomes some 
of the stability issues introduced by the random seed selection.  Within this work, we utilised hierarchical clustering, k-
means and k-means++.  

 

Cluster performance measures 

Clustering differs from supervised ML approaches (where a model is trained on labelled data using a given algorithm 
and parameter setting) by not possessing a given ground truth.  In supervised learning, a target variable, either a class 
(classification) or a numerical value (regression) is used to adjust the model during training and to assess the prediction 
on test data.  In the case of classification, a number of common performance measures, such as predictive accuracy and 
receiver operator characteristics are available to assess the overall performance of the trained model.  Similarly, in the 
regression case, measures such as the mean absolute error, root mean squared error or R2 can be employed.  In contrast, 
the performance of clustering analysis cannot be compared to any ground truth in general, and must be estimated using 
more indirect performance measures.   

For real-world applications, no predefined labels or classes exist, so any performance measure for truly unsupervised 
machine learning employs some indication of how well the cluster algorithm has maximized intra-cluster similarity 
(high similarity within a cluster), while at the same time minimizing inter-cluster similarity (low similarity between 
examples in different clusters).  In this study, the Silhouette Coefficient, Variance Ratio Criterion, Davies-Bouldin 
Criterion and Gap Statistic were employed in order to measure the consistency of the proposed cluster assignments. 

 

Silhouette coefficient 

The Silhouette Coefficient (SC) for each observation i is calculated as follows6: 

𝑠𝑠𝑠𝑠(𝑖𝑖) =

⎩
⎪
⎨

⎪
⎧1 − 𝑎𝑎(𝑖𝑖)

𝑏𝑏(𝑖𝑖)� ,     𝑖𝑖𝑖𝑖 𝑎𝑎(𝑖𝑖) < 𝑏𝑏(𝑖𝑖)

0,     𝑖𝑖𝑖𝑖 𝑎𝑎(𝑖𝑖) = 𝑏𝑏(𝑖𝑖)
𝑏𝑏(𝑖𝑖)

𝑎𝑎(𝑖𝑖)� − 1,      𝑖𝑖𝑖𝑖 𝑎𝑎(𝑖𝑖) > 𝑏𝑏(𝑖𝑖)
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with  𝑎𝑎(𝑖𝑖) being the mean distance between i and all other observations within the same cluster: 

𝑎𝑎(𝑖𝑖) = 1
⌊𝐶𝐶𝑖𝑖⌋−1

∑ 𝑑𝑑(𝑖𝑖, 𝑗𝑗)𝑗𝑗∈𝐶𝐶𝑖𝑖,𝑗𝑗≠𝑖𝑖   (with 𝑖𝑖 ∈ 𝐶𝐶𝑖𝑖 – observation i in cluster 𝐶𝐶𝑖𝑖) 

and 𝑏𝑏(𝑖𝑖) being the mean distance between i and all observations in the nearest neighbouring cluster: 

𝑏𝑏(𝑖𝑖) = 𝑚𝑚𝑚𝑚𝑚𝑚
𝑘𝑘≠𝑖𝑖

1
⌊𝐶𝐶𝑘𝑘⌋

∑ 𝑑𝑑(𝑖𝑖, 𝑗𝑗)𝑗𝑗∈𝐶𝐶𝑘𝑘,   (with 𝑗𝑗 ∈ 𝐶𝐶𝑘𝑘 – observation j in cluster 𝐶𝐶𝑘𝑘) 

 

To assess the overall performance of a clustering result, the average of all coefficients 𝑠̃𝑠(𝑘𝑘) =  ∑ 𝑠𝑠𝑠𝑠(𝑖𝑖)𝑖𝑖∈𝐷𝐷
𝑁𝑁

  with 𝑘𝑘 being 
the number of clusters and 𝑁𝑁 the number of overall observations, is used. The closer 𝑠̃𝑠(𝑘𝑘) is to the theoretical maximum 
of 1, the better the average separation of each cluster to their respective neighbouring clusters.  A value close to the 
theoretical minimum of -1 indicates an overlapping clustering.  When establishing the best setting or algorithm for 
clustering, the maximum of the 𝑠̃𝑠(𝑘𝑘) should be sought (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘∈{1,⋯,𝐾𝐾} 𝑠̃𝑠(𝑘𝑘)).  

The SC for the sinus rhythm cohort for 6 clusters using 9 embedding dimensions was 0.143, and for the AF cohort at 5 
clusters and 9 embedding dimensions was 0.147. 

 

Variance ratio criterion  

The Variance Ratio Criterion (VRC), also called Calinski-Harabasz Criterion, measures the intra and inter-cluster 
variance of a clustering7.  A high VRC indicates a clustering with better separation between clusters.  The VRC is 
defined as: 

𝑉𝑉𝑉𝑉𝐶𝐶𝑘𝑘 =  
𝑆𝑆𝑆𝑆𝐵𝐵
𝑆𝑆𝑆𝑆𝑤𝑤

  ×
(𝑁𝑁 − 𝑘𝑘)
(𝑘𝑘 − 1)

 

with 𝑁𝑁 being the number of overall observations and  S𝑆𝑆𝐵𝐵 (sum of squares between clusters) being the overall inter-
cluster variance defined as: 

𝑆𝑆𝑆𝑆𝐵𝐵 = ∑ 𝑛𝑛𝑖𝑖‖𝑚𝑚𝑖𝑖 − 𝑚𝑚‖2𝑘𝑘
𝑖𝑖=1    

where k is the number of clusters, ni is the number of observations in cluster i, mi is the centroid of cluster i, m is the 
overall mean of the sample data and ‖mi − m‖ is the Euclidean distance between these two points (vectors).  

 

The S𝑆𝑆𝑊𝑊 (sum of squares within clusters) being the overall intra-cluster variance defined as: 

𝑆𝑆𝑆𝑆𝑊𝑊 = ∑ ∑ ‖𝑥𝑥 −𝑚𝑚𝑖𝑖‖2𝑥𝑥∈𝑐𝑐𝑖𝑖
𝑘𝑘
𝑖𝑖=1   with x being an observation in cluster ci and mi being the centroid of the cluster.  

The VRC for the sinus rhythm cohort for 6 clusters using 9 embedding dimensions was 2468.450 and for the AF cohort 
at 5 clusters and 9 embedding dimensions was 589.994. 

 

Davies-Bouldin criterion 

The Davies-Bouldin (DB) Criterion is measuring the ratio of within-cluster (intra) and between cluster distances 
(inter)8, with a low score indicating better separation between clusters, calculated as: 

DB =
1
𝑘𝑘
�𝑚𝑚𝑚𝑚𝑥𝑥𝑗𝑗≠𝑖𝑖�𝐷𝐷𝑖𝑖,𝑗𝑗�
𝑘𝑘

𝑖𝑖=1

 

where Di,j is the within-to-between cluster distance ratio for the ith and jth clusters defined as: 

𝐷𝐷𝑖𝑖,𝑗𝑗 =
�𝑑𝑑𝚤𝚤� + 𝑑𝑑𝚥𝚥� �
𝑑𝑑𝑖𝑖,𝑗𝑗

 

where 𝑑𝑑𝚤𝚤�  and 𝑑𝑑𝚥𝚥� are the average distances of each observation in cluster i and j respectively and 𝑑𝑑𝑖𝑖 , 𝑗𝑗 is the distance 
between the centroids of the two clusters i and j.  

The DB for the sinus rhythm cohort for 6 clusters using 9 embedding dimensions was 1.905, and for the AF cohort at 5 
clusters and 9 embedding dimensions was 1.837. 
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Gap statistic 

The gap statistic9 compares the change in within-cluster dispersion with that expected under an appropriate reference 
null, or random, distribution.  The reference null distribution is produced by clustering randomly generated data using 
the same features space (using a uniform distribution).  The gap value is defined as: 

 𝑔𝑔𝑔𝑔𝑝𝑝𝑑𝑑𝑘𝑘 =  𝐸𝐸𝑛𝑛∗{𝑙𝑙𝑙𝑙𝑙𝑙(𝑊𝑊𝑘𝑘)}  −  𝑙𝑙𝑙𝑙𝑙𝑙(𝑊𝑊𝑘𝑘)  =  
1
𝐵𝐵

 �𝑙𝑙𝑙𝑙𝑙𝑙(𝑊𝑊𝑘𝑘𝑘𝑘
∗ )

𝑏𝑏

−  𝑙𝑙𝑙𝑙𝑙𝑙(𝑊𝑊𝑘𝑘) 

with the within-cluster dispersion 𝑊𝑊𝑘𝑘 defined as  

 𝑊𝑊𝑘𝑘 =  �
1

2𝑛𝑛𝑟𝑟
𝐷𝐷𝑟𝑟  

𝑘𝑘

𝑟𝑟=1

 

and Dr being the sum of the pairwise distances for all points in cluster r and 𝑊𝑊𝑘𝑘𝑘𝑘
∗  defined analogously for the sum of 

pairwise distances of the B random clusterings with 𝑏𝑏 ∈  {1,⋯ ,𝐵𝐵} and 𝐸𝐸𝑛𝑛∗  denoting expectation under a sample of size 
𝑛𝑛 from the reference null distribution.  

 

The gap value ga𝑝𝑝𝑑𝑑𝑘𝑘expresses the gap between the found clustering and the clusters from the randomly generated data 
for given number of clusters k. 

The number of clusters k is chosen for the smallest k with the highest ga𝑝𝑝𝑑𝑑𝑘𝑘for which the following equation is 
satisfied: 

𝑑𝑑 ∈ 𝐷𝐷:  𝑔𝑔𝑔𝑔𝑝𝑝𝑑𝑑𝑘𝑘 ≥ 𝑔𝑔ap𝑑𝑑𝑘𝑘+1 − 𝑠𝑠𝑘𝑘 

 

where 𝑠𝑠𝑘𝑘 is defined as: 

𝑠𝑠𝑘𝑘 = ��
1
𝐵𝐵
�𝑙𝑙𝑙𝑙𝑙𝑙(𝑊𝑊𝑘𝑘𝑘𝑘

∗ ) −  𝑙𝑙 ̅
𝑏𝑏

�

2

∙ �1 +
1
𝐵𝐵

 

with 𝑙𝑙 ̅as:  

 𝑙𝑙 ̅ =  
1
𝐵𝐵

 �𝑙𝑙𝑙𝑙𝑙𝑙(𝑊𝑊𝑘𝑘𝑘𝑘
∗ )

𝑏𝑏

 

 

The gap score for the sinus rhythm cohort for 6 clusters using 9 embedding dimensions was 1.654 and for the AF cohort 
at 5 clusters and 9 embedding dimensions was 1.617 (Supplementary Figure 2). 

 

Evaluation  

Jaccard Index 

The Jaccard Index or Jaccard similarity coefficient j, is a statistic used to assess the similarity between two finite sets (A 
and B)10.  It is defined as the size of the intersection divided by the size of the union of the two sets.  

𝑗𝑗 =
|𝐴𝐴 ∩ 𝐵𝐵|
|𝐴𝐴 ∪ 𝐵𝐵| 

Overall, the Jaccard index can be used to express the similarity of using 1-j, the distance between two sets.  

In clustering, the Jaccard index can be used to define the similarity of two clusterings agreement.  For this, the average j 
is calculated for each label weighted by its support in the data. 

  

Adjusted Rand Index 

Similar to the Jaccard Index, the Rand Index (RI)11 computes the similarity between two clusterings.  For this it 
considers all pairs of samples and counts pairs that are assigned in the same cluster out of all possible pairs.  The raw RI 
is defined as:  
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RI =
|𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎|

|𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝| 

more mathematically: 

Given a set of n elements  

 𝑆𝑆 =  {𝑜𝑜1,⋯ , 𝑜𝑜𝑛𝑛} 

and  

 𝑈𝑈 =  {𝑢𝑢1,⋯ ,𝑢𝑢𝑅𝑅} and  𝑉𝑉 =  {𝑣𝑣1,⋯ , 𝑣𝑣𝐶𝐶} 

 

representing two partitions of S such that  

⋃ 𝑢𝑢𝑖𝑖𝑅𝑅
𝑖𝑖=1 = 𝑆𝑆 =  ⋃ 𝑣𝑣𝑗𝑗𝐶𝐶

𝑗𝑗=1  and  𝑢𝑢𝑖𝑖 ∩ 𝑢𝑢𝑖𝑖′ =  ∅ =  𝑣𝑣𝑗𝑗 ∩ 𝑣𝑣𝑗𝑗′  for  1 ≤ 𝑖𝑖 ≠ 𝑖𝑖′ ≤ 𝑅𝑅 and 1 ≤ 𝑗𝑗 ≠ 𝑗𝑗′ ≤ 𝐶𝐶 . 

Furthermore, let: 

a, be number of pairs of elements in S that are in the same subset in U and in the same subset in V 

b, be number of pairs of elements in S that are in different subsets in U and in different subsets in V 

c, be number of pairs of elements in S that are in the same subset in U and in different subsets in V 

d, be number of pairs of elements in S that are in different subsets in U and in the same subset in V 

The RI is then defined as: 

𝑅𝑅𝑅𝑅 =
𝑎𝑎 + 𝑏𝑏

𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐 + 𝑑𝑑
 

 

The Adjusted Rand Index (ARI)12 is the RI when adjusted for chance.  It can be defined as: 

𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑅𝑅𝑅𝑅 −  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑅𝑅𝑅𝑅

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑅𝑅𝑅𝑅 −  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑅𝑅𝑅𝑅
 

, which is bounded by 1 and -1, and takes on 0 when the index equals the expected value (i.e. when clustering is 
random).  

 

Validation protocol 

Using the generated cluster assignment in <data - study x> as the target, we trained random forest models to predict 
cluster membership for each leave-one-trial-out dataset.  Subsequently, we predicted cluster membership for the 
excluded <study x> and compared this to the cluster assignment from the original clustering.  The leave-one-study-out 
validation used the following approach: 

• Given the complete cohort 𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎  and clustering 𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎  
• For each study 𝑥𝑥 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 and data 𝐷𝐷𝑥𝑥: 

o use 𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎 −  𝐷𝐷𝑥𝑥 and 𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐷𝐷𝑥𝑥  with 𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎  represent the complete cohort and 𝐷𝐷𝑥𝑥 the data for 
study x 

o cluster 𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 , resulting in clustering 𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
o use machine learning (i.e. random forests) to predict cluster membership of 𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 using 𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡as 

training data and 𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 as target, resulting in 𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 
o Estimate a mapping function 𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 able to map 𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡to clusters 𝐶𝐶𝑎𝑎𝑙𝑙𝑙𝑙from 𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎  .  
o Estimate the performance using adjusted Rand index 𝐴𝐴𝐴𝐴𝐴𝐴𝑥𝑥 on 𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎  and 𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) for all patients in 

𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
• Report on weighted average of  𝐴𝐴𝐴𝐴𝐴𝐴 for a  𝑥𝑥 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 .  
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Supplementary Table 1: Included and excluded trials 

Trial acronym Trial name Participants Summary of trial design if included, or reason for exclusion 

Included trials from the Beta-blockers in Heart Failure Collaborative Group (BB-meta-HF) 

ANZ13 Australia/New Zealand Heart Failure Study 415 Randomised controlled trial of carvedilol versus placebo in patients with congestive heart failure due to 
ischaemic heart disease 

BEST14 Beta-Blocker Evaluation Survival Trial 2707 Multicentre, randomized, double-blind trial of bucindolol versus placebo in patients with compensated 
congestive heart failure with LVEF ≤35% 

CAPRICORN15 Carvedilol Post-Infarct Survival Control in LV Dysfunction Study 1959 Multicentre, randomised trial of carvedilol versus placebo in patients with a proven acute myocardial 
infarction and a left-ventricular ejection fraction of ≤40% 

CIBIS-II16 Cardiac Insufficiency Bisoprolol Study II 2647 
Multicentre double-blind randomised trial of bisoprolol versus placebo in symptomatic patients in NYHA 
class III/ IV, with left-ventricular ejection fraction of 35% or less receiving standard therapy with diuretics 
and inhibitors of angiotensin-converting enzyme. 

COPERNICUS17 Carvedilol Prospective Randomized Cumulative Survival Study 2289 Multicentre, double-blind trial of carvedilol versus placebo in patients with more advanced heart failure 
(LVEF ≤25%) 

MDC18 Metoprolol in Idiopathic Dilated Cardiomyopathy Study 383 Multicentre, randomised control trial of metoprolol versus placebo in patients with idiopathic dilated 
cardiomyopathy and LVEF <40% 

MERIT-HF19 Metoprolol CR/XL Randomised Intervention Trial in Congestive 
Heart Failure 3991 Randomized, double-blind, control trial of metoprolol versus placebo in patients with symptomatic heart 

failure and LVEF ≤40%.  

SENIORS20 Study of the Effects of Nebivolol Intervention on Outcomes and 
Rehospitalisation in Seniors with Heart Failure Study 2128 Randomised control trial of nebivolol versus placebo in patients ≥70 years old and a history of heart failure. 

US-HF21 U.S. Carvedilol Heart Failure Study 1094 Double-blind, randomised trial of carvedilol versus placebo stratified by LVEF severity in patients with 
chronic heart failure  

Excluded trials from the Beta-blockers in Heart Failure Collaborative Group (BB-meta-HF) 

CHRISTMAS22 Carvedilol Hibernating Reversible Ischaemia Trial: Marker of 
Success Study 383 Patients with atrial fibrillation were excluded in this trial  

CIBIS-I23 Cardiac Insufficiency Bisoprolol Study 641 Creatinine level not recorded in this trial 

LVEF = left ventricular ejection fraction; NYHA = New York Heart Association.  
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Supplementary Table 2: Baseline characteristics according to randomised treatment allocation 

Characteristic  

All patients   

N=15,659 

Sinus rhythm   

N=12,822 

Atrial fibrillation 

N=2,837 

Placebo  Beta-blockers Placebo Beta-blockers Placebo Beta-blockers 

Age, median years (IQR)  65 (55-72) 64 (55-72) 64 (54-72) 63 (54-71) 69 (60-74) 69 (60-74) 

Women, n (%)  1794 (23%) 1914 (24%) 1543 (25%) 1642 (25%) 251 (18%) 272 (19%) 

Body mass index, median kg/m2 (IQR)  26.7 (24.1-29.8) 26.6 (24.0-29.7) 26.6 (24.0-29.7) 26.5 (23.9-29.7) 27.1 (24.4-30.3) 26.7 (24.1-29.7) 

Heart rate, median beats/minute (IQR)  80 (70-88) 80 (72-89) 80 (72-88) 80 (72-88) 81 (72-92) 81 (73-91) 

Systolic BP, median mmHg (IQR)  124 (110-140) 124 (110-140) 123 (110-140) 123 (110-138) 125 (113-140) 127 (113-140) 

LVEF, median % (IQR)  27 (21-33) 27 (21-33) 27 (21-33) 27 (21-33) 27 (21-33) 27 (21-33) 

Prior myocardial infarction, n (%)  4211 (55%) 4327 (54%) 3632 (58%) 3779 (58%) 549 (41%) 548 (39%) 

NYHA class III/IV, n (%)  4336 (64%) 4466 (64%) 3452 (62%) 3596 (62%) 884 (73%) 870 (72%) 

Creatinine, μmol/L median (IQR)  104 (88-124) 106 (88-125) 103 (88-124) 104 (88-124) 106 (90-129) 109 (90-132) 

ACEi or ARB, n (%)  7349 (95%) 7528 (95%) 5988 (95%) 6200 (95%) 1361 (96%) 1328 (94%) 

Any diuretic therapy, n (%)   6658 (86%) 6905 (87%) 5332 (85%) 5582 (85%) 1326 (93%) 1323 (94%) 

Anticoagulation therapy, n (%)  2499 (32%) 2534 (32%) 1661 (26%) 1718 (26%) 838 (59%) 816 (58%) 

Digoxin, n (%)  4530 (59%) 4769 (60%) 3332 (53%) 3587 (55%) 1198 (84%) 1182 (84%) 

ACEi = angiotensin converting enzyme inhibitor; ARB = angiotensin receptor blocker; BP = blood pressure; IQR= interquartile range; LVEF = left-ventricular ejection fraction; NYHA 
= New York Heart Association.  

Missing data report: not applicable as only participants with complete case data were used for analysis.   
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Supplementary Table 3: Cluster characteristics in sinus rhythm 

Baseline characteristic 
SR1 

N=433 

SR2 

N= 1001 

SR3 

N= 1414 

SR4 

N=2537 

SR5 

N= 3497 

SR6 

N=3940  

Age, median years (IQR) 48 (43-52) 66 (60-72) 69 (63-73) 70 (64-74) 52 (47-58) 66 (59-72) 

Women, n (%) 31 (7%) 302 (30%) 886 (63%) 544 (21%) 684 (20%) 738 (19%) 

Body mass index, median kg/m2 (IQR) 28.1 (26.7-30.9) 26.2 (24.1-29.1) 26.4 (23.6-29.4) 27.1 (24.8-29.9) 28.5 (25.7-32.2) 24.7 (22.5-27.2) 

Heart rate, median beats/minute (IQR) 78 (72-85) 78 (68-80) 81 (74-89) 75 (69-81) 83 (75-92) 80 (73-90) 

Systolic BP, median mmHg (IQR) 120 (110-130) 124 (112-135) 140 (127-152) 133 (122-147) 123 (110-138) 113 (104-124) 

LVEF, median % (IQR) 32 (25-35) 35 (30-38) 31 (28-34) 33 (30-35) 24 (20-30) 21 (17-25) 

Prior myocardial infarction, n (%) 352 (81%) 929 (93%) 448 (32%) 1877 (74%) 1407 (40%) 2397 (61%) 

NYHA class III/IV, n (%) 59 (14%) 31 (3%) 1184 (84%) 975 (38%) 2936 (84%) 3292 (84%) 

Creatinine, μmol/L median (IQR) 97 (84-110) 97 (80-110) 86 (73-99) 102 (88-120) 100 (86-118) 118(100-143) 

ACEi or ARB, n (%) 419 (97%) 934 (93%) 1350 (95%) 2375 (94%) 3414 (98%) 3695 (94%) 

Any diuretic therapy, n (%) 77 (18%) 52 (5%) 1343 (95%) 2325 (92%) 3304 (94%) 3812 (97%) 

Anticoagulation therapy, n (%)  27 (6%) 93 (9%) 271 (19%) 396 (16%) 1074 (31%)  1518 (39%) 

Digoxin, n (%)  39 (9%) 61 (6%) 929 (66%) 729 (29%) 2431 (70%) 2729 (69%) 

ACEi = angiotensin converting enzyme inhibitor; ARB = angiotensin receptor blocker; BP = blood pressure; IQR, interquartile range; LVEF, left-ventricular ejection fraction; NYHA, 
New York Heart Association. 
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Supplementary Table 4: Validation protocol in the sinus rhythm cohort 

Study 

Number of participants Adjusted Jaccard score Adjusted Rand Index 

Iteration set 

(all minus trial x) 

Prediction set 

(study x) 

Iteration set 

(all minus trial x) 

Prediction set 

(study x) 

Iteration set 

(all minus trial x) 

Prediction set 

(study x) 

CAPRICORN 11249 1573 0.589 0.471 0.533 0.459 

US Carvedilol 12072 750 0.532 0.500 0.519 0.416 

SENIORS 11693 1129 0.574 0.546 0.577 0.419 

MERIT-HF 9625 3197 0.386 0.429 0.484 0.453 

CIBIS II 10861 1961 0.708 0.692 0.608 0.591 

ANZ 12468 354 0.598 0.372 0.610 0.393 

MDC 12560 262 0.644 0.683 0.625 0.467 

COPERNICUS 11393 1429 0.558 0.784 0.539 0.640 

BEST 10655 2167 0.618 0.688 0.623 0.601 

Average  

(95% CI) 
  

0.579  

(0.521 to 0.636) 

0.574 

(0.481 to 0.667) 

0.569 

(0.535 to 0.602) 

0.493 

(0.433 to 0.553) 

Robustness of clustering and validity protocol in the 9 dimensions and 6 clusters model for all-cause mortality in sinus rhythm.  Both the Jaccard score and Adjusted Rand Index were 
significantly different to random cluster assignment using repeated random forest models (p<0.0001 and p=0.0198, respectively).  
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Supplementary Table 5: Cluster characteristics in atrial fibrillation 

Baseline characteristic 
AF1 

N=608 

AF2 

N=659 

AF3 

N=696 

AF4 

N=403 

AF5 

N=471 

Age, median years (IQR) 74 (70-77) 58 (53-63) 73 (69-76) 71 (64-76) 61 (53-70) 

Women, n (%) 38 (35%) 13 (16%) 28 (21%) 8 (5%) 8 (8%) 

Body mass index, median kg/m2 (IQR) 27.0 (24.4-29.8) 29.1 (26.6-32.8) 26.3 (24.1-28.7) 25.6 (22.9-28.3) 25.8 (23.2-29.0) 

Heart rate, median beats/minute (IQR) 80 (72-88) 84 (75-94) 80 (72-90) 80 (72-88) 88 (76-100) 

Systolic BP, median mmHg (IQR) 135 (120-150) 130 (120-144) 132 (120-147) 113 (104-125) 110 (105-120) 

LVEF, median % (IQR) 35 (32-38) 28 (23-33) 25 (21-30) 22 (18-26) 22 (18-26) 

Prior myocardial infarction, n (%) 49 (45%) 11 (14%) 75 (55%) 111 (74%) 17 (17%) 

NYHA class III/IV, n (%) 38 (35%) 69 (87%) 129 (94%) 136 (91%) 82 (79%) 

Creatinine, μmol/L median (IQR) 96 (81-111) 95 (83-110) 110 (97-125) 156 (137-181) 115 (98-133) 

ACEi or ARB, n (%) 102 (94%) 76 (96%) 128 (93%) 138 (92%) 102 (98%) 

Any diuretic therapy, n (%) 88 (81%) 75 (95%) 133 (97%) 148 (99%) 101 (97%) 

Anticoagulation therapy, n (%) 43 (39%) 44 (56%) 75 (55%) 108 (73%) 81 (78%) 

Digoxin, n (%) 72 (66%) 71 (90%) 115 (84%) 131 (88%) 99 (95%) 

ACEi = angiotensin converting enzyme inhibitor; ARB = angiotensin receptor blocker; BP = blood pressure; IQR, interquartile range; LVEF, left-ventricular ejection fraction; NYHA, 
New York Heart Association.  
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Supplementary Table 6: Validation protocol in the atrial fibrillation cohort 

Trial (x) 

Number of participants Adjusted Jaccard score Adjusted Rand Index 

Iteration set 

(all minus trial x) 

Prediction set 

(study x) 

Iteration set 

(all minus trial x) 

Prediction set 

(study x) 

Iteration set 

(all minus trial x) 

Prediction set 

(study x) 

CAPRICORN 2701 136 0.658 0.887 0.585 0.928 

US Carvedilol 2703 134 0.528 0.490 0.501 0.360 

SENIORS 2337 500 0.592 0.828 0.493 0.873 

MERIT-HF 2176 661 0.359 0.539 0.302 0.586 

CIBIS II 2329 508 0.471 0.610 0.406 0.535 

ANZ 2788 49 0.778 0.712 0.831 0.710 

MDC 2787 50 0.646 0.337 0.637 0.073 

COPERNICUS 2417 420 0.542 0.381 0.522 0.318 

BEST 2458 379 0.718 0.521 0.683 0.400 

Average 

 (95% CI) 
  

0.588  

(0.504 to 0.672) 

0.590  

(0.466 to 0.713) 

0.551  

(0.449 to 0.653) 

0.532 

(0.351 to 0.712) 

Robustness of clustering and validity protocol in the 9 dimensions and 5 clusters model for all-cause mortality in atrial fibrillation.  Both the Jaccard score and Adjusted Rand Index 
were significantly different to random cluster assignment using repeated random forest models (p<0.0001 and p=0.0264, respectively). 
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Supplementary Figure 1: Simplified overview comparing neural networks with autoencoders 

 

 

 

 

 

 

 

Simplified overview between (a) Neural Networks and (b) Autoencoders.  Blue dots represent the input nodes and values; dark green dots represent the hidden layer(s); and the light 
green dot the output layer for prediction.  In the case of (b), the autoencoder is trained to learn the identity function (it learns to reconstruct the input from the hidden layer, the so-called 
bottleneck layer).  
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Supplementary Figure 2: Cluster selection based on the gap statistic  

 

 

Heatmap plots of the gap values (gap statistics) for different embedding dimensions (x-axis) and the number of clusters (y-axis) for sinus rhythm and atrial fibrillation.  The number of 
clusters for each analysis was objectively decided based on the gap statistic (higher better) with selection stopping for each dimension once a drop in the gap statistic was noted for an 
increasing cluster size.  The final combination of dimensions and clusters for each cohort are indicated by red squares.   
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Supplementary Figure 3: Eight-cluster model for beta-blocker efficacy in sinus rhythm 

 

 

Green circles represent the average mortality risk, with size relative to the number of patients in that cluster.  Odds ratios and associated 95% CI are for the efficacy of beta-blockers 
versus placebo for all-cause mortality in sinus rhythm (SR); odds below the red dotted line indicate a benefit from beta-blockers.
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